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a b s t r a c t

Assuming that the pressure coefficient on the body surface is defined by the angle between the local
normal to it and the velocity vector of the undisturbed flow, the problem of the shape of a body which
possesses the maximum lift-to-drag ratio is solved. When the bottom section area and the constant
coefficient of friction are given, the optimal body has a plane windward surface positioned at the angle of
attack to the undisturbed flow. The leeward surface of the optimal body is parallel to the velocity vector
of the undisturbed flow. The absolutely optimal body is a two-dimensional wedge. When additional
constraints on the external dimensions of the body are specified, solutions of variational problems are
obtained on the basis of which bodies which have the maximum lift-to-drag ratio in supersonic flow are
designed.

© 2009 Elsevier Ltd. All rights reserved.

Local interaction models (LIM) of a supersonic flow with the surface of the body over which the flow occurs have been widely used
when calculating the aerodynamic characteristics of supersonic and hypersonic aircraft. Within the limits of LIM, it is assumed that the
force due to the action of the flow on an element of the body surface depends solely on the angle between the normal to the element of the
surface and the velocity vector of the undisturbed flow. The flow parameters can appear in this relation as constant quantities. A special
example of such a model is Newton’s drag law.

The tangent wedge method,1 frequently used in applied investigations, is another example of an LIM which, unlike Newton’s formula,
takes account of the effect of the Mach number. This method enables one to determine the aerodynamic characteristics of load-carrying
bodies with an accuracy comparable with the results of the numerical integration of the equations of motion of an ideal gas.2 The use of
local approaches in solving body optimization problems with respect to one of its integral characteristics (the drag or lift-to-drag ratio)
has a long-established history.3–6 The results of numerous investigations (see Ref. 6) have shown that these solutions, which are found
within the limits of LIM, not only provide important qualitative information on the structure of the optimal surface but are often close to
the solutions obtained using direct methods, the basis of which is the numerical solutions of the exact equations of supersonic gas flow.

In the case of an arbitrary drag law, written within the limits of LIM, the solution of the problem concerning the spatial shape of the body
with minimum drag has been found7–9 without constraints on the class of admissible surfaces. There is no such solution in the case of the
problem of the body with the maximum lift-to-drag ratio and, up to now, it has only been analysed when there are additional constraints
imposed on the drag law or the class of admissible surfaces.

For example, a solution of the variational problem of the body with maximum lift-to-drag ratio has been obtained4,5 within the limits
of Newton’s model for slender bodies. Using direct methods, solutions of the problem have been found10,11 for conical bodies without
constraints on the body thickness.

The problem of the three-dimensional body with maximum lift-to-drag ratio, without constraints on its thickness and the shape of the
optimal surface, is still of current interest. Its analytical solution is found below within the limits of LIM using the basic ideas in Refs 7–9.

1. Formulation of the problem

Considering supersonic flow over a three-dimensional body, we will assume that the unit velocity vector of the free stream v is parallel
to the OX axis of the Cartesian system of coordinates OXYZ: v = -x, where x is a unit vector of the OX axis (see Fig. 1). The OY axis is directed
upwards, and the direction of the OZ axis corresponds to a right-handed system of coordinates. We will assume that the body has a plane
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Fig. 1.

base lying in the OYZ plane and that the body surface S facing the flow is a single-valued function of the coordinates of the points of the
base: x = f(y, z).

It is assumed that the body interacts with the flow only with the part of the surface on which � = (n · v) ≥ 0, where n is the unit vector
of the inward normal to the element of the body surface, and the pressure coefficient Cp acting on it is a known function of the quantity �
and the free-stream Mach number. Within the limits of LIM, in general form we have

(1.1)

The tangent wedge method1 for determining the pressure coefficient gives the following relation between Cp and �

(1.2)

Here � is the ratio of the specific heat capacities and M is the Mach number.
When A → ∞, relation (1.2) corresponds to Newton’s formula

and, for small values of � and when A → 0, relation (1.2) becomes the formula of the linear theory of supersonic flow over a plane plate

In the case of the assumptions made, � (1.1) is a function of the coordinates y and z which, on the body surface S facing the flow, is given
by the expression

(1.3)

We next assume that the coefficient of friction Cf is constant over the body surface and that the shear stresses acting on an element of
it lie in the plane of the vectors n and v such that the tangential vector � corresponding to them is coplanar with the vectors n and v. If y is
the unit vector along the OY axis, then, in this case,

(1.4)
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Taking account of expressions (1.1) and (1.4) as well as the fact that, in the case of the assumptions made, � > 0, dS = �−1dydz, where dS
is the area of an element of the body surface, for the aerodynamic lift coefficient Cy and the drag coefficient Cx one can write the formulae

(1.5)

Henceforth, unless otherwise stated, integration is carried out over the surface of the base of a body having a specified area Sb.
The lift-to-drag ratio of a body is defined by the expression

(1.6)

The problem of finding the shape of the body possessing the maximum lift-to-drag ratio reduces to determining the function f(y, z)
which, for a given area Sb, makes the functional K (1.6) a maximum. In the general case, the functional K depends on the Mach number and
the coefficient of friction, which are the parameters of the problem.

We will now write the first variation of the functional K

If K reaches a maximum, then �K = 0 and the condition

(1.7)

is satisfied.
Taking expression (1.5) into account, it can be seen from this that the problem of a maximum of the functional (1.6) is equivalent to the

problem of finding the extremum of the following functional

(1.8)

Here � is a constant factor, and �, g and u are functions of the variables y and z.

2. Analysis of the solution of the variational problem

Taking relations (1.3) and (1.4) into account, it can be seen that the integrand F of the functional (1.8) depends solely on the functions
u and w. In this case, the Euler equations for the extremal surface have the form (see Ref. 3)

(2.1)

Using expression (1.8) for F, we rewrite expressions (2.1) in the form of the following system of equations

(2.2)

System of equations (2.2), when �>0, has two families of solutions

(2.3)

(2.4)

When w = 0, we have � = (1 + u2)−1/2 and, from the second relation of (2.3) we obtain u = u1 = const. This solution defines a family of
planes parallel to the OZ axis

(2.5)

which are arranged at an angle of attack �1 to the flow, where

Note that u1 = ctg�1 and, when u1 > 0, segments of the planes (2.5) make a positive contribution to the lift coefficient Cy (1.5) since,
when u1 < 0, this contribution is negative.

We find the value � = �2 = const, from the second equation of (2.4) and, taking this into account and using expression (2.2) for J, from
the condition J = 0 we obtain u = u2 = const, which defines the second family of planes

(2.6)

Each solution (2.6) contains two symmetric planes, touching a cone with an aperture angle 2arcsin�2. It follows from the second
condition of (2.4) that the existence, on the surface of the optimal body, of segments of such planes makes no contribution to the lift
coefficient Cy (1.5).

System (2.2) has no other solutions when � > 0 and, consequently, the optimal body surface must be constructed from segments of
planes (2.5) and (2.6). Note that a positive value of K (1.6) in the case of a designed body is only possible in the case when its surface
contains segments of the plane (2.5) with u1 > 0.
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We will denote the lift-to-drag ratio of a plate on which w = 0 by K1, and put u = u1 > 0. The plate is arranged at an angle of attack �1 to
the flow and is parallel to planes (2.5). Since a segment of plane (2.5) is the sole surface of the optimal body making a positive contribution
to the lift coefficient Cy (1.5), then always

(2.7)

In order to obtain the closed surface of the optimal body, it is necessary to combine and join segments of the surfaces (2.5) and (2.6).
The necessary Weierstrass-Erdmann condition3 must be satisfied when they are joined. This condition stipulates that the function F must
have the same value on both segments of the surface:

(2.8)

where F1 and F2 are the values of the function F (1.8) for the first family (2.5) and the second family (2.6) of solutions respectively:

Taking these relations into account, from the equality (2.8) we obtain the expression

whence it can be seen that condition (2.7) is violated when Cf ≥ 0. This means that there is no value of K for which conditions (2.7) and
(2.8) are simultaneously satisfied. Consequently, the optimal surface cannot simultaneously contain segments of planes (2.5) and (2.6).
Since the segments of plane (2.5) with u1 > 0 provide the body with lift, their presence in the structure of the optimal surface is obligatory
and segments of surface (2.6) have to be excluded from the treatment. The impossibility of the presence of segments of planes (2.5) with
u1 < 0 in the optimal surface can be shown in a similar manner.

As a result, it has been proved that, of the extremals satisfying Euler’s equations (2.2), the optimal surface can only contain segments
to of plane (2.5) with u1 > 0. It is impossible to construct a closed surface of a body in this case and, consequently, it is impossible to design
a body with a maximal lift-to-drag ratio under the assumptions which have been made.

The absence of a solution to the problem is explained in the first place by the fact that formulae (1.5) were used in its formulation to
describe the lift-to-drag ratio (1.6), and these formulae were obtained under the assumption that � > 0 on the body surface and that there
are no segments of the surface with � = 0 parallel to the flow.

At the same time, it can be shown that, for a given area Sb, there is always a closed surface with segments � = 0, the lift-to-drag ratio of
which is greater than that of a body composed of the extremals of (2.5) and (2.6).

A body, constructed from segments of (2.5) and (2.6), which is symmetrical about the OXY plane, has a triangular base and its shape is
shown schematically in Fig. 1. It can be seen that, for a specified area Sb, the shape is determined by the angles �1, � and � which are found
using the parameters u1, u2 and w2:

(2.9)

Here, y0 is the height of the body along the OY axis and l is the span of the body along the OZ axis.
Using relations (2.9) and taking account of the fact that conditions (2.4) are satisfied on the segments (2.6), we can write the lift-to-drag

ratio in the form

(2.10)

Without changing the shape of the base and the value of �1, we will move the vertex of the body from point A to point B. The shape
of the body and its parameters are changed: � = 0, �2 = 0 and the lift-to-drag ratio of the body increase since, in expression (2.10) which
remains valid for it, the magnitude of 	: 	 = 1/cos� decreases. The body obtained does not belong to the class of admissible shapes since
there is a segment with � = 0 on its surface but its lift-to-drag ratio is greater than that of a body composed of the extremals of (2.5) and
(2.6).

A similar situation arose in the problem of a body of minimum drag for given areas of the base and a wettable surface.9 The problem
was solved then by including segments parallel to the flow, where � = 0, in the composition of the optimal surface. A similar approach is
used below.

3. Solution of the problem when there are segments of the body surface parallel to the flow

We will assume that there are segments with � = 0 on the body surface with an overall area S0. Their presence makes no contribution
to the lift coefficient Cy but it changes the value of the drag such that the lift-to-drag ratio of the body is now given by the expression

(3.1)

Here Cy and Cx are the lift and drag coefficients of the segments of the body surface with � > 0 for which formulae (1.5) hold.

In this case, the first variation of the functional K has the form �K = [�Cy − K�Cx − KCf��0]/[Cx + Cf�0].
If K reaches a maximum, then �K = 0 and the condition

(3.2)
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is satisfied. Condition (3.2) must be satisfied for any admissible variations in the body surface with maximum lift-to-drag ratio. In particular,
it must hold for variations taken at inner points of the surface with � > 0 for a constant value of �0: ��0 = 0. We obtain from this that,
as previously, condition (1.7) must be satisfied on the segments of an optimal body with � > 0, and it follows from this condition that the
structure of the optimal surface with � > 0 is also identical to the structure of the extremals of the functional � (1.8) in this case. These
extremals must satisfy Euler’s equations (2.1) which are given in expanded form as the system of equations (2.2).

Taking account of the results of the analysis of the solutions of system (2.2), we obtain that, when �>0, a plane of family (2.5) is the sole
surface satisfying the necessary conditions for an extremum and providing lift to the body with maximum lift-to-drag ratio K (3.1). In it,
w = 0, u = u1 = const > 0, and it is set at an angle of attack �1 to the flow which is related to u1 by the relation u1 = ctg�1.

On the remaining part of the surface of the optimal body, � = 0. It follows from expression (3.10) that this surface must ensure a minimum
of the values of �0. Then, ��0 = 0, condition (3.2) will be satisfied and the functional K reaches a maximum.

We will assume that the optimal body is symmetrical about the OXY plane. The lower surface of the body is the plane (2.5) with
u = u1 = const > 0 and c1 = 0. In this case, the Oz axis lies in the plane (2.5) and a segment of the axis of length l = 2zk belongs to the contour
of the base of the body (see Fig. 1). In general, the upper surface of the body with � = 0 can consist of two parts.

One of the parts is uniquely projected onto the OXZ axis, and its area is given by the expression

Here, y’ = dy(z)/dz, where y(z) is a function of the contour of the base of the body which is a projection of a segment of the upper surface
of the body with � = 0 onto the OYZ plane.

In the general case, the coordinate yk = y(zk) can be equated to zero and then, on the body, it is still part of the surface with � = 0, which
takes the form of lateral faces from segments of planes parallel to the OXY plane of overall area S02 = u1y2

k
.

As a result, the total area is given by the relation

(3.3)

Hence, from the results of the above analysis of the structure of the optimal surface and taking account of relations (1.5), (3.1) and (3.3),
we have the expression

(3.4)

for the lift-to-drag ratio of the optimal body.
For known flow parameters, the value of K depends on two quantities: u1 and 	0 and, as follows from relations (3.3) and (3.4), their

optimal values, which make the functional K (3.4) a maximum, can be sought independently of one another.
Actually, since the area Sb is related to the function y(z) by the expression

(3.5)

	0 ≥ 1 always and an upper limit of the values of K exists:

(3.6)

The equality K = K0 holds when 	0 = 1 when y’ = 0 and y(z) ≡ 0. Consequently, for a given area Sb, the quantity K is the lift-to-drag ratio of
a body with an infinite span l = 2zk → ∞ which in the limit degenerates into a two-dimensional wedge. This wedge consists of two planes,
one of which is parallel to the OXZ plane while the second contains the OZ axis and is set at an angle of attack �1 to the flow: u1 = ctg�1.
The magnitude of K0 (3.6) is independent of Sb and is determined by the quantity u1. In the case of a known relation Cp(�), it is possible to
find the values of u∗

1 and �∗
1 for which the magnitude of K0 is a maximum. The optimal values of the angle of attack of the lower surface

of the optimal wedge �∗
1 and K* = maxK0 are presented in Table 1 for different values of Cf and M. Here and henceforth, all calculations are

carried out using the relation Cp(�) (1.2) for � = 1.4.
We shall say that a wedge with an angle of attack �∗

1 and a lift-to-drag ratio K* is absolutely optimal since it is impossible to design a
body with a greater lift-to-drag ratio within the limits of the assumptions made.

However, it is obvious that such a body is of no practical interest and, consequently, for a given area Sb, it is necessary to impose
additional constraints on the shape of the unknown body. The solution of the problem with specified constraints on its dimensions is
considered below.

Table 1

M �∗
1, degree K*

Cf = 0.001 0.002 0.003 0.001 0.002 0.003

6 4.32 6.00 7.24 7.345 5.417 4.554
10 5.32 7.19 8.49 6.376 4.834 4.128
15 5.96 7.82 9.11 5.966 4.607 3.970
∞ 6.75 8.50 9.72 5.588 4.410 3.836
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4. Solution of the problem with additional constraints imposed on the shape of the body

For fixed u1, a maximum of the quantity K (3.4) is reached when the value of 	0 is a minimum. It can be seen from expressions
(3.3)–(3.5) that the minimum 	0 is independent of u1 and is reached when the function y(z), defining the upper part of the body, minimizes
the functional

Here �1 is a constant Lagrange multiplier.
From an analysis of the necessary conditions for a minimum of the functional �0, we obtain that the extremal of y(z) must satisfy Euler’s

equation3

(4.1)

and, in accordance with the Weierstrass–Erdmann conditions,

it cannot have corner points. Here �(. . .) denotes the difference of a quantity (...) before and after a corner point.
At the ends of an extremal, the transversality conditions

(4.2)

must be satisfied, where y0 = y(0) and the sign � denotes the variation of a chosen coordinate.

To obtain a minimum at the points of an extremal, the Legendre condition must be satisfied, and it follows from this
that any curve y(z), constructed in accordance with conditions (3.5), (4.1) and (4.2), will minimize the functional �0.

If there are no constraints on the transverse dimensions of the body zk, it then follows from the first condition of (4.2) that c1 = 0. In this
case, we obtain from Eq. (4.1) that y’2 = const and, consequently, the upper part of the body is formed by two symmetric planes which are
parallel to the flow. However, if y0 is not given, then, from a combined analysis of conditions (4.1) and (4.2), we obtain the solution y(z) ≡ 0
and the optimal body is the two-dimensional wedge considered above, which has a lift-to-drag ratio K0 (3.6). Such a body is of no practical
interest, and, therefore, if there are no constraints on the choice of zk, y0 has to be given. Then, yk = 0, and the optimal contour of the base
is defined by the linear function

(4.3)

Hence, when the area of the base Sb and the coordinate y0 are given, a triangular wing with a wedge-shaped profile and a linear contour
of the cross section (4.3), the inclination of which to the OZ axis is defined by the quantity t, will be the optimal body. The shape of the
wing can be obtained schematically if, in the case of the body shown in Fig. 1, the vertex is shifted from point A to point B. It follows from
formulae (2.9), (3.3)–(3.5) and (4.3) that, in this case,

Now suppose constraints are imposed on the transverse dimensions of the body and the value of zk is given. Then, �zk = 0 and, from a
joint analysis of relations (4.1) and (4.2), we obtain that the conditions

(4.4)

are satisfied at the ends of the extremal. It follows from this that c1 < 0, �1 < −1, yk > 0, and Eq. (4.1) takes the form

(4.5)

We will assume that all the linear dimensions of the body are divided by zk. The solution of Eq. (4.5) can then be written in the form

(4.6)

For known �1, all the parameters in expressions (4.4)–(4.6) are uniquely defined. The quantity �1 is found from condition (3.5) using
the given values of Sb and zk, which can be rewritten in the form

From this, �1 is found from the known value of �k using relations (4.4) and (4.6), the dependence of y on z is determined and, together
with it, the optimal shape of the contour of the base of the upper part of the body. Optimal contours, constructed for different values of
�k are given in Fig. 2. Their shape is independent of u1, M and Cf and this means that it is independent of the specific form of the function
Cp(�) (1.1).
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Fig. 2.

Fig. 3.
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The lift-to-drag ratio of a body designed in this manner for a fixed value of u1 and given values of Sb and zk is a maximum and expression
(3.4) holds for it. The value of 	0 in formula (3.4) is found in this case taking account of relations (3.3) and (3.5) using the known parameters
of the optimal shape (4.4)–(4.6), and it is determined by the quantity �k.

The optimal shape of the upper part of the body is constructed under the assumption that u1 is constant but, as was shown above, it is
independent of its specific value. The lower surface of the optimal body is a segment of the plane (2.5) set at an angle of attack �1 to the
flow: u1 = ctg�1. The value of u1 must ensure that the magnitude of K (3.4) is a maximum, and it is found from the equation dK/du1 = 0 in
which the value found from the solution of the variational problems considered above is used for 	0. Since the quantity 	0 depends on the
specified isoperimetric conditions, the optimal body will have different optimal values of u1 and K for different values of t and �k.

Graphs of the optimal angle of attack �1 and the maximum lift-to-drag ratio K against �k for Cf = 0.002 and Mach numbers equal to 6
and 10 are shown in Fig. 3. Note that the optimal values of �1 for which K is a maximum depend only slightly on �k. For instance, when
�k ∈ (0,1), the optimal angle �1 exceeds the magnitude of �∗

1 (see the left-hand side of Table 1) by no more than 0.5◦. This result is true for
all values of M and Cf shown in the table which enables one to use the values of �∗

1 presented in the table for an approximate estimate of
the magnitude of the optimal angle.

A comparison of the shapes and values of K (3.4) of the optimal bodies designed for different isoperimetric conditions is of interest. For
instance, the shape of the optimal body designed with given Sb and zk using the values �k = 0,3, M = 6 and Cf = 0.002 is represented as a
projection onto the OYZ plane by curve 1 in Fig. 4. The transverse contour of its base in a projection onto the OYZ plane is shown by the
dashed line 2 in Fig. 4. For the above-mentioned parameters, the lift-to-drag ratio of the optimal body differs from the value K* by less
than 1%. The corresponding projections of the shape of the body with a linear transverse contour (4.3), designed for the same values of
Sb and zk are represented by curves 3 and 4 in Fig. 4. The length of this body is almost one and a half times greater than the length of the
optimal body and its lift-to-drag ratio is less than the value of K* by 4%. In the general case for bodies with a linear transverse contour (4.3),
having the same values of Sb and zk as the optimal bodies (4.6), graphs of the values of K against �k are shown in Fig. 3 by dashed curves
constructed for Cf = 0.002 and Mach numbers of 6 and 10.

At the same time, in the case of specified values of Sb and y0, the optimal body is a triangular wedge with a linear transverse contour
(4.3). The projection of the wing onto the OXZ plane is represented by curve 5 in Fig. 4. The wing was designed with the same values of Sb
and y0 as the body, the projection of which is represented by curve 1 in Fig. 4. The span of the wing is almost one and a half times greater
than the span of the body and its lift-to-drag ratio is greater than that of a body designed with the same Sb and y0 using formulae (4.4)–(4.6)
by just 0.5%.

It should be noted that the length L of the optimal body is determined when solving the problem using the values of y0 and u1 obtained:
L = y0u1 = y0ctg�1. In the case of a different area of the base Sb and the equality of zk or y0 of the body with the linear transverse contour

Fig. 4.
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Fig. 5.

(4.3) they always have a greater length (Sb and zk are specified) or larger span (Sb and y0 are specified) than a body with a curvilinear
transverse contour for the design of which formulae (4.4)–(4.6) were used. According to expressions (4.4), in the case of optimal bodies
with a curvilinear transverse contour, the coordinate yk > 0 and their shape always contains triangular lateral surfaces which are parallel
to the plane of symmetry of the body.

The isoperimetric problems considered above, with a constraint on the linear dimensions of the base of the body enable one to determine
its optimal shape y = y(z) and the surface of the body of maximum lift-to-drag ratio. In the case when the contour of the base is given, the
curve y = y(z) serves as the controlling upper cylindrical surface of the body with generatrices parallel to the OX axis. In this case, the optimal
value of u1 is also found from the equation dK/du1 = 0, where K is given by expression (3.4) and the quantity 	0, according to relation (3.3),
is a known constant.

As an example, the shapes of optimal bodies with different specified shapes of the base are shown in Fig. 5: 1) semicircular, 2) triangular,
and 3) triangular star, constructed for the same values of Sb and y0: Sb/y2

0 = �/2. The pairs of values (�1. K) for them when M = 15 and
Cf = 0.002 are as follows: 1–(8.21◦, 4.398), 2–(8.09◦, 4.461), 3–(8.1◦, 4.454). Note that, if the shape of the bottom section is not fixed, the
contour of the base of the optimal body in this case has the shape of a triangle.

5. Conclusion

As a result of the investigations carried out assuming a local character of the force interaction of the flow with an element of the body
surface, shapes have been designed possessing maximum lift-to-drag ratio at supersonic flight speeds. It is shown that, when the area of
the bottom section and the constant coefficient of friction are specified, the optimal body has a plane windward surface set at an angle
of attack to the undisturbed flow. The leeward surface of the optimal body is parallel to the velocity vector of the undisturbed flow. The
absolutely-optimal body is a two-dimensional wedge, the lift-to-drag ratio of which depends solely on the Mach number and the magnitude
of the coefficient of friction. With additional constraints on the dimensions of the body, the solutions of variational problems are obtained.
It is shown that, when the height of the base of the body is specified, a triangular wing with a wedge-shaped profile is optimal and, when
a constraint on the span is specified, the optimal shape has plane lateral surfaces, parallel to the plane of symmetry of the body, and its
leading edge and the contour of its base become curved. A comparative analysis of the optimal shapes, designed for different isoperimetric
conditions, has been carried out for different Mach numbers and their lift-to-drag ratio has been determined as well as the performance
of the absolutely-optimal wedge.

As regards their structure, the optimal bodies which have been found are close to bodies which are called “waveriders” in the literature
(see Refs 12 and 13), the high load-bearing properties of which are well known. The upper surface of waveriders is usually specified by
an undisturbed stream surface, and the lower (windward) is designed as a stream surface behind a shock wave of a given form. Plane or
conical shock waves are most frequently used.12,13 Either approximate formulae with a power dependence of the coefficient of friction on
the Reynolds number12 are used or integration is carried out over the body surface for a known state of the boundary layer,13 in order to
determine the viscous drag. In solving the problem of the shape of a waverider with the maximum lift-to-drag ratio, attention is paid to
the design of the windward surface of the body and, as a rule, constraints are imposed on the class of admissible surfaces. For instance, the
optimal shapes of waveriders have been found12,13 for plane and conical shock waves in the class of power surfaces when there are certain
geometrical conditions on the body. In the case of a plane shock wave, these shapes turned out to be close to a wedge with fins12,13 and,
in the case of a conical shock wave, the lower surface of the optimal waverider was found to be close to a plane.13 It was also noted12 that
the state of the boundary layer has a minor effect on the shape of the optimal body.

In this paper, a second approach to the design of bodies possessing maximum lift-to-drag ratio was used. However, the analytical results
obtained in it do not contradict the numerical results obtained for waveriders.12,13 This provides additional arguments in favour of the
chosen local approach which, as in the case of the problem of a body with minimum drag,7–9 enables one to obtain solutions which agree
with the solutions found in the case of more accurate assumptions regarding the character of the force of interaction between the flow
and the body surface.
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